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Abstract. In order to understand the dmtic effect of impurity doping on the transport properties 
of polyacetylene. we investigate in detail how lhe impurity ion potential alone affects the band 
structure of electrons and the order parameter in doped polyacetylene by a self-consistent 
numerical calculation based upon the SuSchrieffer-Heeger Hamiltonian plus the impurity 
potential. Our results show that the potential has only a small effect on gap closure, which 
is mainly determined by lhe larger overlap behveen the electronic wavefunetians in the nearest 
soliton states. We also find that the order parameter does not go to zero in lhe heavily doped 
region where there is no gap. and it is almost unaffected by the impurity potential. 

1. Introduction 

Doping polyacetylene with impurities has drastic effects on its properties. When the doping 
concentration y is very low (y < 0.001), it is an insulator or semiconductor having an 
energy gap of about 1.8 eV. On further doping, its conductivity U can rise very rapidly 
up to y E 0.01. In the regime 0.01 < y < 0.06, its conductivity U still increases rapidly 
but, more importantly, its Pauli susceptibility x p  has a very small value [l]. Finally, when 
y > 0.06, it becomes a metal with a high U and a traditional metallic value of xp .  A 
recently developed fine technique can synthesize polyacetylene having more perfect chains 
with large average conjugation lengths, and so the electrical conductivity in the heavily 
doped sample can become greater than 1.5 x IO5 R-’ cm-’ [2]. However, it is never an 
ordinary metal because the dependence of conductivity on temperature shows a non-metallic 
behaviour, i.e. decreasing with decreasing temperature. 

It seems that there is no unified theoretical model which can explain well the impurity 
effects in polyacetylene for all doping regimes. The Su-Schneffer-Heeger (SSH) model [3] 
gives a physical picture of the new type of soliton excitation in pure and doped polyacetylene. 
So, the electric, magnetic and optical properties can be explained well on the basis of the 
soliton picture for the low-doping regime. For the intermediate- and heavy-doping regimes 
there have been various theoretical models discussing the impurity effects on the physical 
properties of doped polyacetylene. Among them are the variable-range hopping mechanism 
[4], soliton transport [5], polaron lattice [6]. thermal-fluctuation-induced tunnelling between 
metallic particles [7], destruction of the gap at high impurity concentration by the dopant 
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random distribution [SI, and finally the gap closure model [91. All these mainly concern 
electronic transport. 

Although in real doped materials a random distribution of impurities may be possible, 
the conduction mechanism based upon only disorder has a serious drawback because well 
ordered dopant distribution regions are proved to exist by x-rays and neutron scattering, at 
least for Na-doped (CH), [lo]. Also, infrared absorption experiments [11] established that 
up to a doping level of about 18% soliton levels still exist. Conwell el a( [9] analysed 
carefully many different experiments andconcluded that the soliton lattice exists even for the 
heavy-doping regime, and the carriers added (electrons or holes) because of doping go into 
the soliton lattice [9,12]. We know that doping usually has two main effects on material. 
One is simply to increase the number of charge carriers in polyacetylene (electrons or holes, 
depending on whether the dopants are donors or acceptors; hereafter, we are considering 
only the donor case). This effect may be less important, especially in the heavy-doping 
regime. Another is that the dopants become charged ions and have a Coulomb interaction 
with all charge carriers on the polyacetylene chains. This impurity potential can pin the 
soliton lattice and has rather a large effect on the band structure of electrons in trans- 
polyacetylene. This is because the impurity ions lie between chains and its distance to 
the nearest-neighbour chain is rather short, only about 2-2.5 A; moreover the transverse 
screening is much weaker. The usual theories do not include the effects of the impurity 
ion potential and so can only be applied to the pure or low-doping cases. Bryant and Click 
[I31 calculated the effect of a single impurity ion on the distribution of energy levels in 
the conduction and valence bands and found that the effect is rather strong. Without the 
ion potential, theoretical calculation found that above 6% doping the energy gap still exists. 
Even when the ion potential effect on only the nearest-neighbour C atom is included, the 
calculation found that the gap still did not disappear [14]. Conwell etal [9] calculated the 
band structure for a chain of doped trans-polyacetylene including the Coulomb potential 
caused by both dopant ions and charged solitons surrounding the chain. They found that 
the energy gap does not disappear completely for the heavy-doping regime, but that a small 
gap, about 0.1 eV, remains at the Fermi energy. Because the gap is small, the behaviour at 
room temperature could be metallic but, at low temperatures, it should be semiconducting. 
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2. Model 

From the description given above we see that in order to clarify why doping has so drastic 
an effect on the transport properties of polyacetylene, it is important to investigate in detail 
how the impurity ion potential alone affects the band structure of electrons and the order 
parameter of doped polyacetylene. This paper will do that by self-consistent numerical 
calculation of the SSH Hamiltonian plus the impurity potential. The Hamiltonian that we 
have used in calculation is written as 

where to is the transfer integral of electrons in the undimerized state, U,, is the displacement 
of the nth lattice site, (Y is the electron-phonon coupling constanr K is the elastic constant, 
and c,& and crib are the creation and annihilation operators of a n-electron with spin U at 
the nth site. V, is the Coulomb potential due to all impurity ions at the nth site. 
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where -e is the electron charge, ei the ith ion charge, ni the coordinate of the ith ion along 
the chain, Q the.lattice constant, ri the perpendicular distance of the ith ion from the chain 
and E the dielectric constant. Here, for simplicity, we neglect the anisotropic screening 
effect. A periodic boundary condition has been used for the system in our calculation. 

We know that in the discrete SSH model there are no analytic solutions; so the self- 
consistent numerical solution has to be determined. In this paper, we have used the simple 
iteration method. First, we define a bond variable y(n)  as 

y(n) = U,+! - un (3) 

and denote the eleckonic eigenstates by its wavefunctions &(n) which diagonalizes the 
electronic part of the total Hamiltonian (equation (I)) and also satisfies the periodic boundary 
condition. Both &(n)  and y(n)  should be determined by the following coupled equations: 

(6; - vn)@i(n) = 4 1 0  -my(" - I) lh(n - 1) - [to - ory(n)lh(n + 1) (4) 

where ei is the single-electron energy eigenvalue in the eigenstate &(n), N is the total 
number of the lattice sites, and the prime on the summation in (5) means that the sum is 
restricted to the occupied single-electron eigenstates. 

The coupled equations (4) and (5) can be solved by the following iteration procedure. 
First of all, we fix the positions of all N"p impurity ions. As discussed above, the impurity 
ion distribution may be random or in an ordered phase; however, in this paper, we prefer 
to choose Nj,, impurity ion sites in an almost ordered manner. Next we can calculate 
from equation (2) the Coulomb potential V, produced by these ions. Then, choosing a set 
( y (n ) )  of homogeneous values as their initial values and substituting them into (4), we can 
diagonalize it to find the eigenvalue 6i and corresponding eigenfunctions ($;(n)]. The &(n) 
obtained are then substituted into equation (5) to obtain a new set of ( y ( n ) } .  The iteration is 
repeated until the difference between the new ( y ( n ) )  and the old values becomes negligibly 
small. 

In the calculation, the parameters are taken as follows: K = 21 eV A-*, to = 2.5 eV, 
01 = 4.1 eV A-', e,= 10, a = 1.22 A and ri = d = 2.0 A; the total number of lattice sites 
N = 100, and the total number of electrons Ne = N + Ni,,. All the calculated results will 
be discussed in the following sections. 

3. Band structure 

For a chain of 100 sites and a set of numbers of impurity ions, Njmp = 2, 4, 6, 8, 10, 
12, 14, 16, we have calculated the electronic energy bands, some of which are shown in 
table 1. It is easily seen that, when Nimp = 12, the gap between the soliton band edge 
and the valence band edge (hereafter called the lower gap) disappears; the gap between the 
soliton band and the conduction band (hereafter called the upper gap) almost disappears 
too, but it is still slightly larger than the average level spacing in the conduction band 
(about 7% larger). When Nimp = 16, no gaps exist. In order to see how the levels evolve 
with the impurity ion potential V, we also calculate the bands for PV,, (P = 0, 0.2, 0.4, 
0.6, 0.8, 1.0) and different doping concentrations. The results for Njmp = 12 are shown 
in figure 1. In contrast with the results obtained by Conwell et ~l [9], we find that the 
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potential V, is not beneficial to gap closure but, on the contrary, increases the gap slightly 
around the Fermi surface. For example, when ,!3 = 0, i.e. without the ion potential, the 
values of both the upper and the lower gaps, are, in fact, less than the nearby level spacings 
in the conduction and valence bands for Njmp = 12. As ,!3 increases from zero, the largest 
effect of the potential is to make the whole bands move downwards. However, the upper 
gap becomes gradually slightly larger, but it has only a very small quantitative difference 
from the average level spacing around the Fermi surface until p is equal to 1. This is 
obvious from the fact that the essential effect on the gap closure comes from the average 
distance between two neighbouring soliton centres. When the distance becomes shorter 
than the soliton length, about 11  sites, the overIap between the electron wavefunctions in 
neighbouring soliton states is strong, which causes the gap to close. The exact value of 
impurity ion concentration wimp = Ni,,/N at which the gap closure appears should not 
be considered seriously, and it is only consistent qualitatively with the experimental resuIt 
because we neglect some important factors, e.g. interchain coupling, anisotropic screening 
and non-uniformity of doping existing in the real materials. The latter makes the impurity 
concentration in part of the doped sample larger than the average impurity concentration 
measured in experiments. Also. including the interchain hopping (three-dimensional effect) 
can much reduce the value of the gap calculated in one dimension. Experiments found the 
metal-insulator transition to occur at about (nimp) rr 6-78 for almost all the doped trans- 
polyacetylene irrespective of whether the impurity ion distribution is random or ordered. 
Therefore, we think that the randomness of the distribution has little effect on the gap 
closure and is not important even though it must have an effect on the electronic levels and 
wavefunctions. This is why we restricted our calculation to the ordered distribution of the 
impurity ions. 

Table 1. Calculated electronic energy levels for a (CH), chain of 100 sites with different 
numbers *mp of impurity ions. 

Nimp = 2 N;mp = 12 Nimp = 16 

Energy level Energy level Energy level 
N (eVl4. I) N (eVl4.1) N (eVl4.1) 

45 -0.312214 41 -0.646199 39 -0.804975 
46 -0.253978 42 -0.580 135 40 -0.742239 
47 -0.251 806 43 -0.578364 41 -0.732618 
48 -0.204 580 44 -0.517685 42 -0.662888 
49 -0.200 172 Lower gap Lower gap 

Lower gap 45 -0.468990 43 -0.644017 
50 -0.089 760 46 -0.419792 44 -0.586906 
51 -0,088 830 47 -0.404876 45 -0.570 0 I9 

52 0.129682 54 -0.121 638 56 -0.131 123 
53 0.131530 55 -0.1 19 162 57 -0.128 589 
54 0.169 486 56 -0.073702 58 -0.079 140 

56 0.225 291 57 0.002299 59 -0.019 661 
58 0.046460 60 0.028601 
59 0.050 802 61 0.031 264 
60 0.1 I6589 62 0.098435 

Upper g;lp 48-53 omitted 46-55 omitted 

55 0.170905 Upper P P  Upper gap 
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Figure 1. Calculated energy levels versus +4 
(the fraction of the potential) for N = 100 
(N is the number of sites) and N,,, = 12, 

Figure 2. Calculaed order pammeter values As versus n for a 
chain of 100 sites for (a )  NI,, = 4 and (b)  N,,, = 12: t, +4 = 0; -. fi = 1. 

4. The order parameter of the soliton 

In addition to electronic levels and wavefunctions we also calculate the order parameter As 
of solitons in order to see whether or not it becomes zero after the metal-insulator transition. 
The results for Nimp = 4 and 12 are shown in figure 2. For comparison, in these figures 
are also shown the results without the impurity ion potential (j3 = 0). We see from figure 2 
that the potential has little effect on the order parameters. Two curves corresponding to the 
cases with the potential and without the potential, respectively, almost coincide with each 
other. This means that the periodic variation in the onler parameter value is completely 
determined by the number of impurity ions Nimp. The total number of the maximum and 
minimum of the order parameter is equal to Nimp. and their positions are also determined by 
the positions of the impurity ions. The effect of the ion potential is only to make the maxima 
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slightly larger and the minima slightly smaller. On increase in the impurity concentration 
the potential effect becomes gradually smaller and smaller. Finally, after the gap disappears 
at NjmP = 12, the two curves for the order parameters with and without the potential totally 
coincide. On the other hand, the variation amplitude of the order parameter value becomes 
smaller and smaller too. However, more importantly, the decreasing rate of the amplitude 
is rather slow, e.g. the amplitude of As at Nj,, = 12 is roughly half its value for the pure 
sample. Even though the band gap does not exist at all for the heavily doped sample, the 
order parameter is still not equal to zero. It seems that this phenomenon is similar to the 
superconductivity with no energy gap and consistent with the experimental observation of 
the infrared-active vibrational modes associated with solitons in heavily doped materials up 
to y N 18%. 
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5. Localization of the electronic wavefunctions 

Knowing all the eigenstates from the self-consistent calculation, we can easily find the 
inverse participation ratio (IPR) of the eigenstate defined as 

Many researchers have used the IPR to estimate the degree of localization of eigenstates 
[15]. Figure 3 shows a distribution of our calculated IPR values on the eigenstates around 
the gap. For the low-doping case (Njmp = 2), two soliton states are localized in the gap. 
Adding the impurity potential to the system makes the two states more localized because 
their IPR values are twice those without the potential. Also those states lying on the upper 
edge of the valence band are more localized because of the effect of the potential. However, 
with increasing impurity concentration, the degree of localization for these states decreases 
rapidly so that, at Nimp = 12, there is no trace of the localization at all for the states. In 
contrast, when the impurity potential is introduced, their degree of localization is increased 
slightly. More probably, in this case we can no longer talk about localization of these 
wavefunctions: in fact, all these states are extended but have a small amplitude modulation 
which causes the charge density to be non-uniform along a chain and to have a periodic 
fluctuation along the chain because of the attractive impurity potential. 

6. Summary 

We have made a self-consistent numerical calculation based upon the SSH model plus the 
long-range Coulomb potential exerted by all impurity ions along a chain. The electronic 
band structure, the bond-alternation order parameter and the IPR values for all electronic 
eigenstates are calculated and discussed as functions of the doping concentration. The effect 
of the impurity potential on these quantities, especially on the band structures, are mainly 
considered in this paper. We found that, even though the potential does indeed have rather 
a large effect on the energy level distribution in the valence, conduction and soliton bands, 
it has only a small effect on the gap closure. Our results demonstrate that the larger overlap 
between the electronic wavefunctions in the nearest soliton states is the determining factor 
for gap closure, which is different from the result of Conwell et 01 [9]. They said that 
achievement of the metallic state requires both good wavefunction overlap in the soliton 
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Figure 3. Disuibution of the IPR (measured by the height of each vertical line) of the many 
eigenstates around the gap for the two cases of (a),  (c). (e) B = 0 and (b), (d), (f) @ = I with 
(a),  (b)  NtmP = 2, (c ) .  ( d )  N,, = 6 and (e). (f) N,,, = 10. 

states and a deep potential well. The impurity potential is found to increase slightly the 
localization of the soliton states in the gap, the localization of the states at the top of the 
valence band and the localization of the states at the bottom of the conduction band. We 
also found that the order parameter A, does not go to zero even in the heavydoping region, 
and the impurity potential has only a small effect on the order parameter in the light-doping 
regime; with increase in the dopant concentration the effect becomes smaller and smaller, 
which is consistent with the experimental observations [ I  11. 

It is well known that there are two types of impurity: one is the site type [16], and 
the other is the bond type [17]. The former changes the site energy of n-electrons, but the 
latter changes the electron transfer energy. In this paper, we did not take into account the 
variation in the transfer integral due to doping at all. Therefore, our impurities belong to 
site-type categoly. As stated at the beginning we have not included the effect of the random 
distribution of the impurity ions for simplicity [18]. We think that the randomness might 
not be an important factor in the band closure at an impurity concentration of about 6 7 %  
because many experiments indicate that the critical concentration is independent of the ion 
distribution (ordered or random). In addition, anisotropic screening is not considered, so 
that the dielectric constant E takes the same value for different directions. Finally, our model 
is purely one dimensional, and the three-dimensional effect has been completely omitted in 
our calculation. Including the three-dimensional effect might reduce the value of the critical 
concentration at which the gap closure appears. 
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